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Abstract
The ground-state energies of several interacting electrons (N � 12) confined
in a parabolic quantum dot with an impurity ion at the centre are obtained by
numerical diagonalizations. Series of magic values of angular momentum are
determined. The rules for identifying the magic numbers are established.

One of the most fascinating phenomena in the study of few-electron quantum dots is the
existence of magic values of the total angular momentum associated with particularly stable
ground states [1]. As regards the interpretation of the origin of magic numbers and their rules,
three radically different theoretical models have been proposed: the composite-fermion model
[2], the geometrical configuration model based on symmetry [3–7], and the �-configuration
model [8]. In the composite-fermion approach, an even number of magnetic flux quanta
are attached to an electron. The interacting electrons occupying the lowest Landau level are
then transformed into non-interacting composite fermions occupying several Landau levels.
Jain et al argued that all possible magic numbers are states where the composite fermions
can compactly fill each Landau level from the lowest possible angular momentum [2]. One
principal advantage of the composite-fermion approach is that it enables one, in the majority
of cases, to directly construct the ground-state wavefunctions with good accuracy, but it does
reject some well-known magic numbers (e.g., L = 40 and L = 50 for N = 6) [9]. In the
geometrical configuration model, it is assumed that the pairwise Coulomb repulsion compels
N electrons in a parabolic potential to form a Wigner molecular polygon withN -fold symmetry
for N � 5 or (N − 1)-fold symmetry for N = 6, 7 (i.e., there is one electron at the centre
of the polygon). From a consideration of rotational and permutation symmetries, the polygon
configurations are prohibited unless the total angular momentum takes the magic values. It
turns out that the magic numbers predicted by the geometrical configuration model are in
full agreement with those obtained by exact numerical diagonalizations when N � 6. But
the model is only partly successful when N = 7 since it does not predict the magic number
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series L = 36, 41, 46, . . . [2, 5]. The geometrical configuration model does not apply to
systems with N > 7 since the lowest-energy configuration of the system is then a multi-shell
structure (n1, n2, n3, . . . , nk), where n1 is the number of electrons in the innermost shell, n2

is the number of electrons in the second shell, etc. Note that∑
j

nj = N.

A multi-shell Wigner molecule does not have any rotational symmetry as a regular polygon,
unless, as on some rare occasions, n1, n2, n3, . . . , and nk happen to be commensurable.
However, numerical calculations show that magic numbers continue to exist in systems with
any number of particles.

The �-configuration model proposed in reference [8] is based on the observation of a
short-range attraction among electrons rotating in different orbits in the lowest Landau level.
The short-range attraction results from the antisymmetrization and is thus a many-body force
in nature. Due to this short-range attraction, electrons tend to fill some adjacent orbits to form
several compact bunches. The numbers of electrons in the bunches are determined by the
saturation of the short-range attraction. Since in the large-L limit the electrons tend to form a
multi-shell Wigner molecule, the energetically most favourable bunch structure should coincide
with the multi-shell structure having the globally minimal energy, while the energetically less
favourable bunch structures should coincide with the multi-shell structures having the locally
minimal energies. In addition, since the energy differences between the global minimum and
the local minima decrease with the increase ofN , several bunch structures become comparable
in reducing the interaction energy whenN is large. In this case several series of magic numbers
can appear. As we have shown in reference [8], the �-configuration model can explain all magic
numbers for both few and many electrons.

To our knowledge, all of the work on the magic numbers to date has been limited to
impurity-free dots. The doping of a homogeneous host matrix with acceptor and donor
impurities has been traditionally one of the central subjects in semiconductor physics, both
because of its intrinsic basic interest and because of its technological implications. The
consideration of impurity effects in quantum dots is not new. For example, Halonen et al
have studied the effects of off-centre Gaussian-type repulsive impurities on the energy levels
of a parabolic dot [10, 11], where the orbital angular momentum is no longer a good quantum
number. In some other works [12, 13], the eigenstates of a Coulomb impurity in spherical
dots have been discussed using various methods. In this paper, we study the magic numbers of
quantum dots with impurities and establish the rules with the aid of the �-configuration model.
This allows us to further test the validity of the model.

Consider the motion of electrons confined in a disc-like parabolic dot subjected to a
vertical magnetic field. Here we assume that the magnetic field is so strong that only the
lowest Landau level is occupied. The effect of higher Landau levels can be included simply
by using the perturbation theory as in reference [8]. The single-particle eigenenergies and
eigenfunctions for the lowest Landau level are [1]

εl = (l + 1)h̄ω − l

2
h̄ωc (l = 0, 1, 2, . . .) (1)

and

|l〉 = [
2l l!a2(l+1)

]−1/2
rle−r2/(4a2) eilϕ

√
2π

(l = 0, 1, 2, . . .). (2)

The meanings of the symbols above are as follows: lh̄ is the angular momentum, ωc is the
magnetic cyclotron frequency, ω is the effective oscillator frequency, and a is the effective
oscillator length.
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In the case of N electrons, we introduce the hyperspherical coordinates to describe the
motion of electrons:

r1 = R cosα1

r2 = R sin α1 cosα2

r3 = R sin α1 sin α2 cosα3

...

rN−1 = R sin α1 sin α2 · · · sin αN−2 cosαN−1

rN = R sin α1 sin α2 · · · sin αN−2 sin αN−1

(3)

where the hyperradius R = (r2
1 + r2

2 + · · · + r2
N)

1/2 is completely symmetric with respect to
particle exchange, and measures the size of the system. α1, . . . , αN−1 are (N−1) hyperangles.
With hyperspherical coordinates, the antisymmetrized wavefunctions of N non-interacting
electrons occupying the l1, l2, . . ., lN orbits separate into the product of a radial and an angular
function:

|l1, l2, . . . , lN 〉 = FL(R)Yl1···lN (�) (4)

with

FL(R) = [
2L+N−1(L +N − 1)!a2(L+N)

]−1/2
RLe−R2/(4a2) (5)

Yl1···lN (�) = Det

{
r̃
l1
1 eil1ϕ1

√
2π(2l1)!!

,
r̃
l2
2 eil2ϕ2

√
2π(2l2)!!

, . . . ,
r̃
lN
N eilNϕN

√
2π(2lN )!!

}
(6)

where � denotes collectively (2N − 1) angular variables α1, . . . , αN−1, and ϕ1, . . . , ϕN ,
r̃j = rj /R; Det{· · ·} represents a Slater determinant.

The Hamiltonian for N interacting electrons in the lowest Landau level of a parabolic dot
with an impurity ion at the centre can be written as

Ĥ =
∑
l

εl b̂
+
l b̂l +

e2

4πε

U(�)

R
(7)

with

U(�) = R

[
η

N∑
j=1

1

rj
+

N∑
j>k

1

rjk

]
(8)

where b̂+
l (b̂l) are the creation (annihilation) operators. η = 1 and −1 for acceptor and

donor ions respectively. The single-particle angular momentum is no longer conserved
due to the electron–electron interaction. But the total angular momentum L continues
to be a good quantum number even in the presence of a centred impurity ion. For
a prescribed L, we expand the trial wavefunction  L(R,�) in terms of the basis set
{|l1, l2, . . . , lN 〉;L = l1 + l2 + · · · + lN }:

 L(R,�) =
∑
l1···lN

cl1···lN |l1, l2, . . . , lN 〉 = FL(R)
∑
l1···lN

cl1···lN Yl1···lN (�) (9)

where cl1···lN are the expansion coefficients. The Hamiltonian is diagonalized numerically to
obtain the eigenfunctions and eigenenergies. The kth eigenfunction and the corresponding
eigenenergy can be written as

 kL(R,�) = FL(R)!kL(�) (10)

Ek(L) = (L +N)ωh̄− L

2
ωch̄ +

e2

4πεβ(L)
λk(L) (11)
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with

β(L) = 1

〈FL |1/R|FL〉 = a[2(L +N − 1)]!!

[2(L +N − 1)− 1]!!

(
2

π

)1/2

≈
√
(L +N)a (12)

λk(L) =
∫
!kL(�)

∗U(�)!kL(�) d� (k = 1, 2, . . .) (13)

where β(L) gives the average size of the system. It is easy to see from equation (12) that
β(L) increases monotonically with L. λk(L), called the correlation factor, is the average
interaction energy on theR = 1 hyperspherical surface. It contains information about electron
correlations. The factorization of the wavefunction into a radial function and an angular
function is a unique characteristic of the lowest Landau level. Here we would like to point out
that while the eigenenergies depend on ω, ωc, and a, the λk(L) are independent of all of these
dynamical parameters, exhibiting the universality of electron correlation in the lowest Landau
level. With the method described above, we have computed the eigenenergies for N = 3–12.
In what follows, since we are focusing our attention on the magic numbers, only the lowest
states are considered.

For dots with a centred acceptor ion, the results are presented in the left columns of figure 1,
where λ1(L), the correlation factors of the lowest states, are presented as functions of L. In
each graph, the λ1(L) curve shows a number of sharp downward cusps. The corresponding L-
values are the magic numbers. Since these states have a particularly low energy in comparison
with their neighbours, they can form the ground state for a wide range of B-field strengths.
Comparing the results for impurity-free dots in references [5, 8] and the results here, we find
that the magic numbers in the two cases are identical for N � 5, but are quite different for
N � 6. As we have demonstrated in references [5, 8], the electrons in an impurity-free dot
tend to form a single compact bunch if N � 5 since the structure associated with the globally
minimal energy is aN -sided polygon, but two compact bunches of (n1, N−n1) if 6 � N � 15
since the structure associated with the globally minimal energy is a two-shell structure. Here
n1 = 1 for N = 6 and 7, n1 = 2 for N = 8, 9, and 10, n1 = 3 for N = 11 and 12, etc. The
electrons in the inner bunch occupy the innermost orbits l = 0, 1, . . ., n1 − 1. In the presence
of an acceptor ion, the repulsive electron–impurity interaction makes the existence of a few
electrons in the innermost orbits energetically very unfavourable. Hence it is reasonable to
expect that the inner electrons will leave the inner orbits and join the outer electrons to form
a bigger compact bunch, resulting in the changes of magic number for N � 6. The necessary
condition for N electrons to form a compact bunch is

L = j + (j + 1) + (j + 2) + · · · + (j +N − 1) = N(N − 1)/2 +Nj (j = 0, 1, 2, . . .).

(14)

It is easy to check that equation (14) gives all of the magic numbers for acceptor-doped
dots shown in the left columns of figure 1, justifying the supposition above. A more direct
justification is gained by comparing the weights of different �-configurations in an eigenstate,
i.e., |cl1l2···lN |2. We find that in the lowest state for an L fulfilling equation (14) the |cl1l2···lN |2
associated with the compact filling is significantly larger than the other components, while
in the lowest state for an L not fulfilling equation (14) the compact filling is inaccessible;
there are several components that have about the same magnitudes. In both cases the
components associated with a dispersive filling of the electrons in different orbits are always
exceedingly small.

In the right columns of figure 1 are the results for donor-doped dots. For N � 5, there
are no evident downward cusps in the λ1(L) curves. In the case of N = 3, the attractive
electron–impurity interaction is strong enough to hold the electrons in orbits l = 0, 1, 2 such
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that a ground state with L = 3 is always maintained as the magnetic field increases. Since
the magnetic length a decreases with increasing field strength [2], the system will shrink
continuously. In the case of N = 4, three electrons are held in the l = 0, 1, 2 orbits and
the fourth electron jumps successively to orbits with higher l as the magnetic field increases.
Consequently, the total angular momentum of the ground state increases successively. In
the case of N = 5, the �-configuration in the ground state is ambiguous. The total angular
momentum of the ground state also increases successively for N = 4 except at some L-
values where λ1(L) shows an upward cusp. The downward cusps in λ1(L) start to appear
for N � 6. In the case of N = 6, the magic numbers can be classified into two sequences:
L(1,5) = 15, 20, 25, 30, 35, . . . and L(2,4) = 15, (19), 23, 27, (31), (35), . . .. In a state in a
sequence L(1,5) the dominant �-configuration is as follows: one electron fills the l = 0 orbit
and the other five fill some outer orbits compactly; the total angular momentum is given by

L(1,5) = 0 + j + (j + 1) + (j + 2) + (j + 3) + (j + 4) = 10 + 5j (j = 1, 2, 3, . . .). (15)

In a state in a sequence L(2,4), two electrons fill the inner orbits l = 0, 1 and the other four fill
some outer orbits compactly; the state has a total angular momentum given by

L(2,4) = 0 + j + j + (j + 1) + (j + 2) + (j + 3) = 7 + 4j (j = 2, 3, 4, . . .). (16)

The two sequences overlap at L = 15 and 35, etc. L = 19 and 31 are in the sequence L(2,4).
They do not show a significant downward cusp since they are respectively adjacent to L = 20
and 30 in the sequence L(1,5). Structurally, it is impossible for two adjacent values of L to
show cusps.

As a generalization of equations (15) and (16), consider a state of N electrons, n of them
filling the inner orbits l = 0, 1, 2, . . . , n − 1 and the other (N − n) compactly filling some
outer orbits l = j, (j + 1), . . . , (N − n + j − 1); the state will have a total angular momentum

L(n,N−n) = [n(n− 1) + (N − n− 1)(N − n)] /2 + (N − n)j (j = n, n + 1, n + 2, . . .).

(17)

With the aid of equation (17), it is easy to classify the magic numbers for other values of
N into sequences. In the case of N = 7, the magic numbers L = 21, 26, 31, 36, 41, . . . form
a sequence L(2,5). In the case of N = 8, the magic numbers L = 28, 34, 40, 46, . . . form a
sequence L(2,6); the magic numbers, L = 38, 43, 48, . . . form a sequence L(3,5). In the case of
N = 9, the magic numbers L = 36, 42, 48, 54, 60, 66, . . . form a sequence L(3,6). In the case
of N = 10, the magic numbers L = 45, 52, 59, 66, 73, . . . form a sequence L(3,7); the magic
numbers L = 57, 63, 69, 75, . . . form a sequence L(4,6). In the case of N = 11, the magic
numbers L = 55, 62, 69, 76, 83, 90, . . . form a sequence L(4,7); the magic numbers L = 67,
73, 79, 85, . . . form a sequence L(5,6); the magic numbers L = 71, 79, 87, . . . form a sequence
L(3,8). In the case of N = 12, the magic numbers L = 66, 74, 82, 90, 98, . . . form a sequence
L(4,8); the magic numbers L = 80, 87, 94, 101, . . . form a sequence L(5,7).

To summarize, we have calculated the ground-state energies of several interacting electrons
occupying the lowest Landau level of a parabolic dot with centred Coulomb impurities. The
hyperspherical coordinates have been introduced to separate each of the interaction energies
into a product of a size factor and a correlation factor, the latter clearly exhibiting the existence
of magic values of the total angular momentum L. In the presence of an acceptor ion, the
regularity of the magic numbers is easily seen, while in the presence of a donor ion, the
regularity appears complicated. Keeping in mind that electrons tend to form compact bunches,
we have successfully classified all of the magic numbers into simple sequences.
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Figure 1. The correlation factors in the lowest states, λ1(L), are presented as functions of L for
N = 3–12. Filled circles denote states that can form the ground state in a varying magnetic field.
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Figure 1. (Continued)
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